

 [image: octopod logo]
 [https://net-shoprunner-scratch-data-science.s3.amazonaws.com/msugimura/octopod/octopod_small.jpg]
Octopod

[image: PyPI version]
 [https://badge.fury.io/py/octopod][image: Workflows Passing]
 [https://github.com/ShopRunner/octopod/actions/workflows/prod.yaml][image: Documentation Status]
 [https://octopod.readthedocs.io/en/latest/?badge=latest]Octopod is a general purpose deep learning library developed by the ShopRunner Data Science team to train multi-task image, text, or ensemble (image + text) models.

What differentiates our library is that you can train a multi-task model with different datasets for each of your tasks. For example, you could train one model to label dress length for dresses and pants length for pants.

See the docs [https://octopod.readthedocs.io/en/latest/] for more details.

To quickly get started, check out one of our tutorials in the notebooks folder. In particular, the synthetic_data tutorial provides a very quick example of how the code works.

Note 7/08/20: We are renaming this repository Octopod (previously called Tonks). The last version of the PyPI library under the name Tonks will not break but will warn the user to begin installing and using Octopod instead. No further development will continue under the name Tonks.

Note 6/12/20: Our team previously had a tradition of naming projects with terms or characters from the Harry Potter series, but we are disappointed by J.K. Rowling’s persistent transphobic comments. In response, we will be renaming this repository, and are working to develop an inclusive solution that minimizes disruption to our users.

Structure

	notebooks

	fashion_data: a set of notebooks demonstrating training Octopod models on an open source fashion dataset consisting of images and text descriptions

	synthetic_data: a set of notebooks demonstrating training Octopod models on a set of generated color swatches. This is meant to be an easy fast demo of the library’s capabilities that can be run on CPU’s.

	octopod

	ensemble: code for ensemble models of text and vision models

	text: code for text models with a BERT architecture

	vision: code for vision models with ResNet50 architectures

Installation

pip install octopod

You may get an error from the tokenizer package if you do not have a Rust compiler installed; see https://github.com/huggingface/transformers/issues/2831#issuecomment-592724471.

Notes

Currently, this library supports ResNet50 and BERT models.

In some of our documentation the terms pretrained and vanilla appear. pretrained is our shorthand for Octopod models that have been trained at least once already so their weights have been tuned for a specific use case. vanilla is our shorthand for base weights coming from transformers or PyTorch for the out-of-the-box BERT and ResNet50 models.

For our examples using text models, we use the transformers [https://github.com/huggingface/transformers] repository managed by huggingface. The most recent version is called transformers. The huggingface repo is the appropriate place to check on BERT documentation and procedures.

Development

Want to add to or fix issues in Octopod? We welcome outside input and have tried to make it easier to test. You can run everything inside a docker container with the following:

to build the container
NOTE: this may take a while
docker build -t octopod .
nvidia-docker run : basic startup with nvidia docker to access gpu
--rm : deletes container when closed
-p : exposes ports (ex: for jupyter notebook to work)
bash : opens bash in the container once it starts
"pip install jupyter && bash" : install requirements-dev and bash
nvidia-docker run \
 -it \
 --rm \
 -v "${PWD}:/octopod" \
 -p 8888:8888 \
 octopod /bin/bash -c "pip install jupyter && bash"
run jupyter notebook
jupyter notebook --ip 0.0.0.0 --no-browser --allow-root --NotebookApp.token='' --NotebookApp.password=''

	Core Octopod
	Multitask Learner

	Multitask Dataloader

	Octopod Ensemble
	Model Architectures

	Dataset

	Learner Utils
	Metric Utils

	Octopod Text
	Model Architectures

	Dataset

	Octopod Vision
	Model Architectures

	Dataset

	Helper Functions

	Contributing and Making PRs
	How to Contribute

	Pull Requests

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Enforcement Responsibilities

	Scope

	Enforcement

	Enforcement Guidelines

	Attribution

Core Octopod

Core Octopod is made up of a learner and dataloader class designed for multi-task multi-dataset learning.

Multitask Learner

	
class octopod.learner.MultiInputMultiTaskLearner(model, train_dataloader, val_dataloader, task_dict, loss_function_dict=None, metric_function_dict=None)

	Multi Input subclass of MultiTaskLearner class

	Parameters

	
	model (torch.nn.Module) – PyTorch model to use with the Learner

	train_dataloader (MultiDatasetLoader) – dataloader for all of the training data

	val_dataloader (MultiDatasetLoader) – dataloader for all of the validation data

	task_dict (dict) – dictionary with all of the tasks as keys and the number of unique labels as the values

Notes

Multi-input datasets should return x’s as a tuple/list so that each element
can be sent to the appropriate device before being sent to the model
see octopod.vision.dataset’s OctopodImageDataset class for an example

	
class octopod.learner.MultiTaskLearner(model, train_dataloader, val_dataloader, task_dict, loss_function_dict=None, metric_function_dict=None)

	Class to encapsulate training and validation steps for a pipeline. Based off the fastai learner.

	Parameters

	
	model (torch.nn.Module) – PyTorch model to use with the Learner

	train_dataloader (MultiDatasetLoader) – dataloader for all of the training data. Set of labels must match val_dataloader
or a ValueError will be thrown.

	val_dataloader (MultiDatasetLoader) – dataloader for all of the validation data. Set of labels must match train_dataloader
or a ValueError will be thrown.

	task_dict (dict) – dictionary with all of the tasks as keys and the number of unique labels as the values

	loss_function_dict (dict) – dictionary where keys are task names (str) and values specify loss functions.
A loss function can be specified using the special string value ‘categorical_cross_entropy’
for a multi-class task or ‘bce_logits’ for a multi-label task. Alternatively,
it can be specified using a Callable that takes the predicted values and the target values
as positional PyTorch tensor arguments and returns a float.

Take care to ensure that the loss function includes a final activation function if needed –
for instance, if your model is being used for classification but does not include a softmax
layer then calculating cross-entropy properly requires performing the softmax classification
within the loss function (this is handled by nn.CrossEntropyLoss() loss function).
For our exisiting model architecture examples we do not apply final layer activation
functions. Instead the desired activation functions are applied when needed.
So we use ‘categorical_cross_entropy’ and ‘bce_logits’ loss functions which apply
softmax and sigmoid activations to their inputs before calculating the loss.

	metric_function_dict (dict) – dictionary where keys are task names and values are metric calculation functions.
If the input is a string matching a supported metric function multi_class_acc
for multi-class tasks or multi_label_acc for multi-label tasks the loss will be filled in.
A user can also input a custom metric function as a function for a given task key.

custom metric functions must take in a y_true and raw_y_pred and output some score and
y_preds. y_preds are the raw_y_pred values after an activation function has been
applied and score is the output of whatever custom metrics the user wants to calculate
for that task.

See learner_utils.loss_utils_config for examples.

	
fit(num_epochs, scheduler, step_scheduler_on_batch, optimizer, device='cuda:0', best_model=False, smooth_loss_alpha=0.2)

	Fit the PyTorch model

	Parameters

	
	num_epochs (int) – number of epochs to train

	scheduler (torch.optim.lr_scheduler) – PyTorch learning rate scheduler

	step_scheduler_on_batch (bool) – flag of whether to step scheduler on batch (if True) or on epoch (if False)

	optimizer (torch.optim) – PyTorch optimzer

	device (str (defaults to 'cuda:0')) – device to run calculations on

	best_model (bool (defaults to False)) – flag to save best model from a single fit training run based on validation loss
The default is False, which will keep the final model from the training run.
True will keep the best model from the training run instead of the model
from the final epoch of the training cycle.

	smooth_loss_alpha (float) – Training loss values displayed during fitting and at the end of each epoch are
exponentially weighted moving averages over batches. Using an exponentially weighted
average over batches is a compromise between reporting the value from the most recent
batch, which is highly relevant but noisy, and reporting a simple average over batches,
which is more stable but reflects the value of the loss at the beginning of the epoch
as much as at the end. smooth_loss_alpha controls how much weight is given to the
current batch. It must be in the (0, 1] interval. Higher values are more like
reporting only the most recent batch, while lower values are more like giving all
batches equal weight, so this value controls the tradeoff between stability and
relevance.

	
get_val_preds(device='cuda:0')

	Return true labels and predictions for data in self.val_dataloaders

	Parameters

	device (str (defaults to 'cuda:0')) – device to run calculations on

	Returns

	‘y_true’: numpy array of true labels, shape: (num_rows,)
‘y_pred’: numpy of array of predicted probabilities: shape (num_rows, num_labels)

	Return type

	Dictionary with dictionary for each task type

	
validate(device='cuda:0', pbar=None)

	Evaluate the model on a validation set

	Parameters

	
	loss_function (function) – function to calculate loss with in model

	device (str (defaults to 'cuda:0')) – device to run calculations on

	pbar (fast_progress progress bar (defaults to None)) – parent progress bar for all epochs

	Returns

	
	overall_val_loss (float) – overall validation loss for all tasks

	val_loss_dict (dict) – dictionary of validation losses for individual tasks

	metrics_scores (dict) – scores for individual tasks

Multitask Dataloader

	
class octopod.dataloader.MultiDatasetLoader(loader_dict, shuffle=True)

	Load datasets for multiple tasks

	Parameters

	
	loader_dict (dict) – dictonary of DataLoaders

	shuffle (Boolean (defaults to True)) – Flag for whether or not to shuffle the data

Octopod Ensemble

The ensemble aspects of Octopod are housed here. This includes sample model architectures, dataset class, and helper functions.

Model Architectures

	
class octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification(image_task_dict=None, dropout=0.1)

	PyTorch ensemble class for multitask learning consisting of a text and image models

This model is made up of multiple component models:
- for text: Google’s BERT model
- for images: multiple ResNet50’s (the exact number depends on how
the image model tasks were split up)

You may need to train the component image and text models first
before combining them into an ensemble model to get good results.

Note: For explicitness, vanilla refers to the
transformers BERT or PyTorch ResNet50 weights while
pretrained refers to previously trained Octopod weights.

Examples

The ensemble model should be used with pretrained
BERT and ResNet50 component models.
To initialize a model in this way:

image_task_dict = {
 'color_pattern': {
 'color': color_train_df['labels'].nunique(),
 'pattern': pattern_train_df['labels'].nunique()
 },
 'dress_sleeve': {
 'dress_length': dl_train_df['labels'].nunique(),
 'sleeve_length': sl_train_df['labels'].nunique()
 },
 'season': {
 'season': season_train_df['labels'].nunique()
 }
}
model = BertResnetEnsembleForMultiTaskClassification(
 image_task_dict=image_task_dict
)

resnet_model_id_dict = {
 'color_pattern': 'SOME_RESNET_MODEL_ID1',
 'dress_sleeve': 'SOME_RESNET_MODEL_ID2',
 'season': 'SOME_RESNET_MODEL_ID3'
}

model.load_core_models(
 folder='SOME_FOLDER',
 bert_model_id='SOME_BERT_MODEL_ID',
 resnet_model_id_dict=resnet_model_id_dict
)

DO SOME TRAINING

model.save(SOME_FOLDER, SOME_MODEL_ID)

OR

model.export(SOME_FOLDER, SOME_MODEL_ID)

	Parameters

	
	image_task_dict (dict) – dictionary mapping each pretrained ResNet50 models to a dictionary
of the tasks it was trained on

	dropout (float) – dropout percentage for Dropout layer

	
static create_text_dict(image_task_dict)

	Create a task dict for the text model from the image task dict

	
export(folder, model_id, model_name=None)

	Exports the entire model state dict to a specific folder,
along with the image_task_dict, which is needed to reinstantiate the model.

	Parameters

	
	folder (str or Path) – place to store state dictionaries

	model_id (int) – unique id for this model

	model_name (str (defaults to None)) – Name to store model under, if None, will default to multi_task_ensemble_{model_id}.pth

Side Effects

	saves two files:
	
	folder / f’multi_task_ensemble_{model_id}.pth’

	folder / f’image_task_dict_{model_id}.pickle’

	
forward(x)

	Defines forward pass for ensemble model

	Parameters

	x (dict) –
	dictionary of torch tensors with keys:
	
	bert_text: integers mapping to BERT vocabulary

	full_img: tensor of full image

	crop_img: tensor of cropped image

	Returns

	

	Return type

	A dictionary mapping each task to its logits

	
freeze_bert()

	Freeze all core BERT layers

	
freeze_classifiers_and_core()

	Freeze pretrained classifier layers and core BERT/ResNet layers

	
freeze_ensemble_layers()

	Freeze all final ensemble layers

	
freeze_resnets()

	Freeze all core ResNet models layers

	
load(folder, model_id)

	Loads the model state dicts for ensemble model
from a specific folder. This will load all the model
components including the final ensemble and existing
pretrained classifiers.

	Parameters

	
	folder (str or Path) – place where state dictionaries are stored

	model_id (int) – unique id for this model

Side Effects

	loads from six files:
	
	folder / f’bert_dict_{model_id}.pth’

	folder / f’dropout_dict_{model_id}.pth’

	folder / f’image_resnets_dict_{model_id}.pth’

	folder / f’image_dense_layers_dict_{model_id}.pth’

	folder / f’ensemble_layers_dict_{model_id}.pth’

	folder / f’classifiers_dict_{model_id}.pth’

	
load_core_models(folder, bert_model_id, resnet_model_id_dict)

	Loads the weights from pretrained BERT and ResNet50 Octopod models

Does not load weights from the final ensemble and classifier layers.
use case is for loading SR_pretrained component BERT and image model
weights into a new ensemble model.

	Parameters

	
	folder (str or Path) – place where state dictionaries are stored

	bert_model_id (int) – unique id for pretrained BERT text model

	resnet_model_id_dict (dict) – dict with unique id’s for pretrained image model,
e.g.
```
resnet_model_id_dict = {


’task1_task2’: ‘model_id1’,
‘task3_task4’: ‘model_id2’,
‘task5’: ‘model_id3’













Side Effects


	loads from four files:
	
	folder / f’bert_dict_{bert_model_id}.pth’


	folder / f’dropout_dict_{bert_model_id}.pth’


	
	folder / f’resnet_dict_{resnet_model_id}.pth’
	for each resnet_model_id in the resnet_model_id_dict







	folder / f’dense_layers_dict_{resnet_model_id}.pth’













	
save(folder, model_id)

	Saves the model state dicts to a specific folder.
Each part of the model is saved separately,
along with the image_task_dict, which is needed to reinstantiate the model.


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	model_id (int) – unique id for this model








Side Effects


	saves six files:
	
	folder / f’bert_dict_{model_id}.pth’


	folder / f’dropout_dict_{model_id}.pth’


	folder / f’image_resnets_dict_{model_id}.pth’


	folder / f’image_dense_layers_dict_{model_id}.pth’


	folder / f’ensemble_layers_dict_{model_id}.pth’


	folder / f’classifiers_dict_{model_id}.pth’













	
unfreeze_classifiers()

	Unfreeze pretrained classifier layers






	
unfreeze_classifiers_and_core()

	Unfreeze pretrained classifiers and core BERT/ResNet layers












Dataset


	
class octopod.ensemble.dataset.OctopodEnsembleDataset(text_inputs, img_inputs, y, tokenizer, max_seq_length=128, transform='train', crop_transform='train')

	Load image and text data specifically for an ensemble model


	Parameters

	
	text_inputs (pandas Series) – the text to be used


	img_inputs (pandas Series) – the paths to images to be used


	y (list) – A list of dummy-encoded categories or strings,
which will be encoded using a sklearn label encoder


	tokenizer (pretrained BERT Tokenizer) – BERT tokenizer likely from transformers


	max_seq_length (int (defaults to 128)) – Maximum number of tokens to allow


	transform (str or list of PyTorch transforms) – specifies how to preprocess the full image for a Octopod image model
To use the built-in Octopod image transforms, use the strings: train or val
To use custom transformations supply a list of PyTorch transforms.


	crop_transform (str or list of PyTorch transforms) – specifies how to preprocess the center cropped image for a Octopod image model
To use the built-in Octopod image transforms, use strings train or val
To use custom transformations supply a list of PyTorch transforms.













	
class octopod.ensemble.dataset.OctopodEnsembleDatasetMultiLabel(text_inputs, img_inputs, y, tokenizer, max_seq_length=128, transform='train', crop_transform='train')

	Multi label subclass of OctopodEnsembleDataset


	Parameters

	
	text_inputs (pandas Series) – the text to be used


	img_inputs (pandas Series) – the paths to images to be used


	y (list) – a list of lists of binary encoded categories or strings with length equal to number of
classes in the multi-label task. For a 4 class multi-label task
a sample list would be [1,0,0,1], A string example would be [‘cat’,’dog’],
(if the classes were [‘cat’,’frog’,’rabbit’,’dog]), which will be encoded
using a sklearn label encoder to [1,0,0,1].


	tokenizer (pretrained BERT Tokenizer) – BERT tokenizer likely from transformers


	max_seq_length (int (defaults to 128)) – Maximum number of tokens to allow


	transform (str or list of PyTorch transforms) – specifies how to preprocess the full image for a Octopod image model
To use the built-in Octopod image transforms, use the strings: train or val
To use custom transformations supply a list of PyTorch transforms.


	crop_transform (str or list of PyTorch transforms) – specifies how to preprocess the center cropped image for a Octopod image model
To use the built-in Octopod image transforms, use strings train or val
To use custom transformations supply a list of PyTorch transforms.


















            

          

      

      

    

  

    
      
          
            
  
Learner Utils

This section contains helper code for the Octopod learner pipelines for supporting multiple loss functions and metrics for individual tasks.


Metric Utils


	
octopod.learner_utils.metrics_utils.multi_class_accuracy(y_true, y_raw_preds)

	Takes in raw outputs from Octopod task heads and outputs an accuracy metric
and the processed predictions after a softmax as been applied


	Parameters

	
	y_true (np.array) – Target labels for a specific task for the predicted samples in y_raw_preds


	y_raw_preds (np.array) – predicted values for the validation set for a specific task






	Returns

	
	acc (float) – Output of a sklearn accuracy score function


	y_preds (np.array) – array of predicted values where a softmax has been applied















	
octopod.learner_utils.metrics_utils.multi_label_accuracy(y_true, y_raw_preds)

	Takes in raw outputs from Octopod task heads and outputs an accuracy metric
and the processed predictions after a sigmoid as been applied


	Parameters

	
	y_true (np.array) – Target labels for a specific task for the predicted samples in y_raw_preds


	y_raw_preds (np.array) – predicted values for the validation set for a specific task






	Returns

	
	acc (float) – Output of a sklearn accuracy score function


	y_preds (np.array) – array of predicted values where a sigmoid has been applied




















            

          

      

      

    

  

    
      
          
            
  
Octopod Text

The text aspects of Octopod are housed here. This includes sample model architectures and a dataset class.


Model Architectures


	
class octopod.text.models.multi_task_bert.BertForMultiTaskClassification(config, pretrained_task_dict=None, new_task_dict=None, dropout=0.1)

	PyTorch BERT class for multitask learning. This model allows you to load
in some pretrained tasks in addition to creating new ones.

Examples

To instantiate a completely new instance of BertForMultiTaskClassification
and load the weights into this architecture you can use the from_pretrained
method of the base class by specifying the name of the weights to load, e.g.:

model = BertForMultiTaskClassification.from_pretrained(
    'bert-base-uncased',
    new_task_dict=new_task_dict
)

# DO SOME TRAINING

model.save(SOME_FOLDER, SOME_MODEL_ID)





To instantiate an instance of BertForMultiTaskClassification that has layers for
pretrained tasks and new tasks, you would do the following:

model = BertForMultiTaskClassification.from_pretrained(
    'bert-base-uncased',
    pretrained_task_dict=pretrained_task_dict,
    new_task_dict=new_task_dict
)

model.load(SOME_FOLDER, SOME_MODEL_DICT)

# DO SOME TRAINING






	Parameters

	
	config (json file) – Defines the BERT model architecture.
Note: you will most likely be instantiating the class with the from_pretrained method
so you don’t need to come up with your own config.


	pretrained_task_dict (dict) – dictionary mapping each pretrained task to the number of labels it has


	new_task_dict (dict) – dictionary mapping each new task to the number of labels it has


	dropout (float) – dropout percentage for Dropout layer









	
export(folder, model_id, model_name=None)

	Exports the entire model state dict to a specific folder.

Note: if the model has pretrained_classifiers and new_classifers,
they will be combined into the pretrained_classifiers attribute before being saved.


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	model_id (int) – unique id for this model


	model_name (str (defaults to None)) – Name to store model under, if None, will default to multi_task_bert_{model_id}.pth








Side Effects


	saves one file:
	
	folder / model_name













	
forward(tokenized_input)

	Defines forward pass for Bert model


	Parameters

	tokenized_input (torch tensor of integers) – integers represent tokens for each word



	Returns

	



	Return type

	A dictionary mapping each task to its logits










	
freeze_bert()

	Freeze all core Bert layers






	
freeze_pretrained_classifiers_and_bert()

	Freeze pretrained classifier layers and core Bert layers






	
import_model(folder, file)

	Imports the entire model state dict from a specific folder.

Note: to export a model based on the import_model from this method,
use the export method


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	file (str) – filename for the exported model object













	
load(folder, model_id)

	Loads the model state dicts from a specific folder.


	Parameters

	
	folder (str or Path) – place where state dictionaries are stored


	model_id (int) – unique id for this model








Side Effects


	loads from three files:
	
	folder / f’bert_dict_{model_id}.pth’


	folder / f’dropout_dict_{model_id}.pth’


	folder / f’pretrained_classifiers_dict_{model_id}.pth’













	
save(folder, model_id)

	Saves the model state dicts to a specific folder.
Each part of the model is saved separately to allow for
new classifiers to be added later.

Note: if the model has pretrained_classifiers and new_classifers,
they will be combined into the pretrained_classifiers_dict.


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	model_id (int) – unique id for this model








Side Effects


	saves three files:
	
	folder / f’bert_dict_{model_id}.pth’


	folder / f’dropout_dict_{model_id}.pth’


	folder / f’pretrained_classifiers_dict_{model_id}.pth’













	
unfreeze_pretrained_classifiers()

	Unfreeze pretrained classifier layers






	
unfreeze_pretrained_classifiers_and_bert()

	Unfreeze pretrained classifiers and core Bert layers












Dataset


	
class octopod.text.dataset.OctopodTextDataset(x, y, tokenizer, max_seq_length=128)

	Load data for use with a BERT model


	Parameters

	
	x (pandas Series) – the text to be used


	y (list) – A list of dummy-encoded or string categories
will be encoded using an sklearn label encoder


	tokenizer (pretrained BERT Tokenizer) – BERT tokenizer likely from transformers


	max_seq_length (int (defaults to 128)) – Maximum number of tokens to allow













	
class octopod.text.dataset.OctopodTextDatasetMultiLabel(x, y, tokenizer, max_seq_length=128)

	Multi label subclass of OctopodTextDataset


	Parameters

	
	x (pandas Series) – the text to be used


	y (list) – a list of lists of binary encoded categories or string categories
with length equal to number of classes in the multi-label task.
For a 4 class multi-label task a sample list would be [1,0,0,1],
A string example would be [‘cat’,’dog’],
(if the classes were [‘cat’,’frog’,’rabbit’,’dog]), which will be encoded
using a sklearn label encoder to [1,0,0,1].


	tokenizer (pretrained BERT Tokenizer) – BERT tokenizer likely from transformers


	max_seq_length (int (defaults to 128)) – Maximum number of tokens to allow


















            

          

      

      

    

  

    
      
          
            
  
Octopod Vision

The computer vision aspects of Octopod are housed here. This includes sample model architectures, dataset class, and helper functions.


Model Architectures


	
class octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification(pretrained_task_dict=None, new_task_dict=None, load_pretrained_resnet=False)

	PyTorch image attribute model. This model allows you to load
in some pretrained tasks in addition to creating new ones.

Examples

To instantiate a completely new instance of ResnetForMultiTaskClassification
and load the weights into this architecture you can set pretrained to True:

model = ResnetForMultiTaskClassification(
    new_task_dict=new_task_dict,
    load_pretrained_resnet = True
)

# DO SOME TRAINING

model.save(SOME_FOLDER, SOME_MODEL_ID)





To instantiate an instance of ResnetForMultiTaskClassification that has layers for
pretrained tasks and new tasks, you would do the following:

model = ResnetForMultiTaskClassification(
    pretrained_task_dict=pretrained_task_dict,
    new_task_dict=new_task_dict
)

model.load(SOME_FOLDER, SOME_MODEL_DICT)

# DO SOME TRAINING






	Parameters

	
	pretrained_task_dict (dict) – dictionary mapping each pretrained task to the number of labels it has


	new_task_dict (dict) – dictionary mapping each new task to the number of labels it has


	load_pretrained_resnet (boolean) – flag for whether or not to load in pretrained weights for ResNet50.
useful for the first round of training before there are fine tuned weights









	
export(folder, model_id, model_name=None)

	Exports the entire model state dict to a specific folder.
Note: if the model has pretrained_classifiers and new_classifiers,
they will be combined into the pretrained_classifiers attribute before being saved.


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	model_id (int) – unique id for this model


	model_name (str (defaults to None)) – Name to store model under, if None, will default to multi_task_bert_{model_id}.pth








Side Effects


	saves one file:
	
	folder / model_name













	
forward(x)

	Defines forward pass for image model


	Parameters

	
	x (dict of image tensors containing tensors for) – 


	and cropped images. the full image tensor (full) – 


	the key 'full_img' and the cropped tensor has (has) – 


	key 'crop_img' (the) – 






	Returns

	



	Return type

	A dictionary mapping each task to its logits










	
freeze_all_pretrained()

	Freeze pretrained classifier layers and core model layers






	
freeze_core()

	Freeze all core model layers






	
freeze_dense()

	Freeze all core model layers






	
load(folder, model_id)

	Loads the model state dicts from a specific folder.


	Parameters

	
	folder (str or Path) – place where state dictionaries are stored


	model_id (int) – unique id for this model








Side Effects


	loads from three files:
	
	folder / f’resnet_dict_{model_id}.pth’


	folder / f’dense_layers_dict_{model_id}.pth’


	folder / f’pretrained_classifiers_dict_{model_id}.pth’













	
save(folder, model_id)

	Saves the model state dicts to a specific folder.
Each part of the model is saved separately to allow for
new classifiers to be added later.

Note: if the model has pretrained_classifiers and new_classifers,
they will be combined into the pretrained_classifiers_dict.


	Parameters

	
	folder (str or Path) – place to store state dictionaries


	model_id (int) – unique id for this model








Side Effects


	saves three files:
	
	folder / f’resnet_dict_{model_id}.pth’


	folder / f’dense_layers_dict_{model_id}.pth’


	folder / f’pretrained_classifiers_dict_{model_id}.pth’













	
unfreeze_pretrained_classifiers()

	Unfreeze pretrained classifier layers






	
unfreeze_pretrained_classifiers_and_core()

	Unfreeze pretrained classifiers and core model layers












Dataset


	
class octopod.vision.dataset.OctopodImageDataset(x, y, transform='train', crop_transform='train')

	Load data specifically for use with a image models


	Parameters

	
	x (pandas Series) – file paths to stored images


	y (list) – A list of dummy-encoded categories or strings
For instance, y might be [0,1,2,0] for a 3 class problem with 4 samples,
or strings which will be encoded using a sklearn label encoder


	transform (str or list of PyTorch transforms) – specifies how to preprocess the full image for a Octopod image model
To use the built-in Octopod image transforms, use the strings: train or val
To use custom transformations supply a list of PyTorch transforms


	crop_transform (str or list of PyTorch transforms) – specifies how to preprocess the center cropped image for a Octopod image model
To use the built-in Octopod image transforms, use strings train or val
To use custom transformations supply a list of PyTorch transforms













	
class octopod.vision.dataset.OctopodImageDatasetMultiLabel(x, y, transform='train', crop_transform='train')

	Subclass of OctopodImageDataset used for multi-label tasks


	Parameters

	
	x (pandas Series) – file paths to stored images


	y (list) – a list of lists of binary encoded categories or strings with length equal to number of
classes in the multi-label task. For a 4 class multi-label task
a sample list would be [1,0,0,1], A string example would be [‘cat’,’dog’],
(if the classes were [‘cat’,’frog’,’rabbit’,’dog]), which will be encoded
using a sklearn label encoder to [1,0,0,1].


	transform (str or list of PyTorch transforms) – specifies how to preprocess the full image for a Octopod image model
To use the built-in Octopod image transforms, use the strings: train or val
To use custom transformations supply a list of PyTorch transforms


	crop_transform (str or list of PyTorch transforms) – specifies how to preprocess the center cropped image for a Octopod image model
To use the built-in Octopod image transforms, use strings train or val
To use custom transformations supply a list of PyTorch transforms















Helper Functions


	
octopod.vision.helpers.center_crop_pil_image(img)

	Helper function to crop the center out of images.

Utilizes the centercrop function from wildebeest


	Parameters

	img (array) – PIL image array



	Returns

	PIL.Image



	Return type

	Slice of input image corresponding to a cropped area around the center















            

          

      

      

    

  

    
      
          
            
  
Contributing and Making PRs


How to Contribute

We welcome contributions in the form of issues or pull requests!

We want this to be a place where all are welcome to discuss and contribute, so please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. Find the Code of Conduct in the CODE-OF-CONDUCT.md file on GitHub or in the Code of Conduct section of read the docs.

If you have a problem using Octopod or see a possible improvement, open an issue in the GitHub issue tracker. Please be as specific as you can.

If you see an open issue you’d like to be fixed, take a stab at it and open a PR!




Pull Requests

To create a PR against this library, please fork the project and work from there.


Steps


	Fork the project via the Fork button on Github


	Clone the repo to your local disk.


	Create a new branch for your PR.




git checkout -b my-awesome-new-feature






	Install requirements (probably in a virtual environment)




virtualenv venv
source venv/bin/activate
pip install -r requirements-dev.txt
pip install -e .






	Develop your feature


	Submit a PR to main! Someone will review your code and merge your code into main when it is approved.







PR Checklist


	Ensure your code has followed the Style Guidelines below


	Run the linter on your code




source venv/bin/activate
flake8 octopod tests






	Make sure you have written unittests where appropriate


	Make sure the unittests pass




source venv/bin/activate
pytest -v






	Update the docs where appropriate. You can rebuild them with the commands below.




cd docs/
make html
open build/html/index.html






	Update the CHANGELOG







Style Guidelines

For the most part, this library follows PEP8 with a couple of exceptions.


	Indent with 4 spaces


	Lines can be 100 characters long


	Docstrings should be numpy style [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html] docstrings.


	Your code should be Python 3 compatible


	When in doubt, follow the style of the existing code


	We prefer single quotes for one-line strings unless using double quotes allows us to avoid escaping internal single quotes.












            

          

      

      

    

  

    
      
          
            
  
Contributor Covenant Code of Conduct


Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.




Our Standards

Examples of behavior that contributes to a positive environment for our community include:


	Demonstrating empathy and kindness toward other people


	Being respectful of differing opinions, viewpoints, and experiences


	Giving and gracefully accepting constructive feedback


	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience


	Focusing on what is best not just for us as individuals, but for the overall community




Examples of unacceptable behavior include:


	The use of sexualized language or imagery, and sexual attention or
advances of any kind


	Trolling, insulting or derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or email
address, without their explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting







Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.




Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement by submitting this anonymous form [https://forms.gle/11DcyKpYkVjmRDKV9] or by sending an email to opensource@shoprunner.com. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.




Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:


1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.




2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.




3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.




4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior,  harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the project community.






Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.







            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   o
   


   
     		 	

     		
       o	

     
       	[image: -]
       	
       octopod	
       

     
       	
       	   
       octopod.dataloader	
       

     
       	
       	   
       octopod.ensemble.dataset	
       

     
       	
       	   
       octopod.ensemble.models.multi_task_ensemble	
       

     
       	
       	   
       octopod.learner	
       

     
       	
       	   
       octopod.learner_utils.metrics_utils	
       

     
       	
       	   
       octopod.text.dataset	
       

     
       	
       	   
       octopod.text.models.multi_task_bert	
       

     
       	
       	   
       octopod.vision.dataset	
       

     
       	
       	   
       octopod.vision.helpers	
       

     
       	
       	   
       octopod.vision.models.multi_task_resnet	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | R
 | S
 | U
 | V
 


B


  	
      	BertForMultiTaskClassification (class in octopod.text.models.multi_task_bert)


  

  	
      	BertResnetEnsembleForMultiTaskClassification (class in octopod.ensemble.models.multi_task_ensemble)


  





C


  	
      	center_crop_pil_image() (in module octopod.vision.helpers)


  

  	
      	create_text_dict() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification static method)


  





E


  	
      	export() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)

      
        	(octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


        	(octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      


  





F


  	
      	fit() (octopod.learner.MultiTaskLearner method)


      	forward() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)

      
        	(octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


        	(octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      


      	freeze_all_pretrained() (octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      	freeze_bert() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)

      
        	(octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


      


  

  	
      	freeze_classifiers_and_core() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


      	freeze_core() (octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      	freeze_dense() (octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      	freeze_ensemble_layers() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


      	freeze_pretrained_classifiers_and_bert() (octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


      	freeze_resnets() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


  





G


  	
      	get_val_preds() (octopod.learner.MultiTaskLearner method)


  





I


  	
      	import_model() (octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


  





L


  	
      	load() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)

      
        	(octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


        	(octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      


  

  	
      	load_core_models() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


  





M


  	
      	
    module

      
        	octopod.dataloader


        	octopod.ensemble.dataset


        	octopod.ensemble.models.multi_task_ensemble


        	octopod.learner


        	octopod.learner_utils.metrics_utils


        	octopod.text.dataset


        	octopod.text.models.multi_task_bert


        	octopod.vision.dataset


        	octopod.vision.helpers


        	octopod.vision.models.multi_task_resnet


      


  

  	
      	multi_class_accuracy() (in module octopod.learner_utils.metrics_utils)


      	multi_label_accuracy() (in module octopod.learner_utils.metrics_utils)


      	MultiDatasetLoader (class in octopod.dataloader)


      	MultiInputMultiTaskLearner (class in octopod.learner)


      	MultiTaskLearner (class in octopod.learner)


  





O


  	
      	
    octopod.dataloader

      
        	module


      


      	
    octopod.ensemble.dataset

      
        	module


      


      	
    octopod.ensemble.models.multi_task_ensemble

      
        	module


      


      	
    octopod.learner

      
        	module


      


      	
    octopod.learner_utils.metrics_utils

      
        	module


      


      	
    octopod.text.dataset

      
        	module


      


      	
    octopod.text.models.multi_task_bert

      
        	module


      


  

  	
      	
    octopod.vision.dataset

      
        	module


      


      	
    octopod.vision.helpers

      
        	module


      


      	
    octopod.vision.models.multi_task_resnet

      
        	module


      


      	OctopodEnsembleDataset (class in octopod.ensemble.dataset)


      	OctopodEnsembleDatasetMultiLabel (class in octopod.ensemble.dataset)


      	OctopodImageDataset (class in octopod.vision.dataset)


      	OctopodImageDatasetMultiLabel (class in octopod.vision.dataset)


      	OctopodTextDataset (class in octopod.text.dataset)


      	OctopodTextDatasetMultiLabel (class in octopod.text.dataset)


  





R


  	
      	ResnetForMultiTaskClassification (class in octopod.vision.models.multi_task_resnet)


  





S


  	
      	save() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)

      
        	(octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


        	(octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      


  





U


  	
      	unfreeze_classifiers() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


      	unfreeze_classifiers_and_core() (octopod.ensemble.models.multi_task_ensemble.BertResnetEnsembleForMultiTaskClassification method)


      	unfreeze_pretrained_classifiers() (octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)

      
        	(octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


      


  

  	
      	unfreeze_pretrained_classifiers_and_bert() (octopod.text.models.multi_task_bert.BertForMultiTaskClassification method)


      	unfreeze_pretrained_classifiers_and_core() (octopod.vision.models.multi_task_resnet.ResnetForMultiTaskClassification method)


  





V


  	
      	validate() (octopod.learner.MultiTaskLearner method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Octopod
        


        		
          Core Octopod
          
            		
              Multitask Learner
            


            		
              Multitask Dataloader
            


          


        


        		
          Octopod Ensemble
          
            		
              Model Architectures
            


            		
              Dataset
            


          


        


        		
          Learner Utils
          
            		
              Metric Utils
            


          


        


        		
          Octopod Text
          
            		
              Model Architectures
            


            		
              Dataset
            


          


        


        		
          Octopod Vision
          
            		
              Model Architectures
            


            		
              Dataset
            


            		
              Helper Functions
            


          


        


        		
          Contributing and Making PRs
          
            		
              How to Contribute
            


            		
              Pull Requests
              
                		
                  Steps
                


                		
                  PR Checklist
                


                		
                  Style Guidelines
                


              


            


          


        


        		
          Contributor Covenant Code of Conduct
          
            		
              Our Pledge
            


            		
              Our Standards
            


            		
              Enforcement Responsibilities
            


            		
              Scope
            


            		
              Enforcement
            


            		
              Enforcement Guidelines
              
                		
                  1. Correction
                


                		
                  2. Warning
                


                		
                  3. Temporary Ban
                


                		
                  4. Permanent Ban
                


              


            


            		
              Attribution
            


          


        


      


    
  

_images/octopod_small.jpg
OCTOPOD





_static/file.png





_static/minus.png





_static/plus.png





